文章编号:1000-324X(2020)07-0781-08

Ag 与 Ag₂O 协同增强 TiO₂ 光催化制氢性能的研究

王 苹,李心宇,时占领,李海涛

(武汉理工大学 化学化工与生命科学学院, 武汉 430070)

摘 要:本研究采用两步法制备了电子助剂 Ag 和界面活性位点 Ag₂O 共修饰的高效 TiO₂ 光催化剂(TiO₂/Ag-Ag₂O): 首先用光沉积法将 Ag 负载在 TiO₂ 表面(TiO₂/Ag),再经过低温煅烧法使部分 Ag 原位生成 Ag₂O。紫外光照射 TiO₂ 时,激发产生的电子被助剂 Ag 捕获后快速传输到 Ag₂O 上,电子把 Ag₂O 界面产氢活性位点从溶液中所捕获的氢离 子还原成氢气, Ag 和 Ag₂O 的协同作用加快了 TiO₂ 上光生电子的转移和界面产氢反应,从而提高了 TiO₂/Ag-Ag₂O 制氢性能。在 300 ℃煅烧温度下制备的 TiO₂/Ag-Ag₂O 光催化剂制氢速率最高,达到 75.20 µmol/h,分别是 TiO₂(3.59 µmol/h)和 TiO₂/Ag(41.13 µmol/h)的 21.0 倍和 1.8 倍。本研究为光催化制氢材料的设计和制备提供了有益 的参考。

关 键 词: TiO₂; 电子助剂; 界面活性位点; 协同作用; 光催化制氢 **中图分类号:** O643 **文献标识码:** A

Synergistic Effect of Ag and Ag₂O on Photocatalytic H₂-evolution Performance of TiO₂

WANG Ping, LI Xinyu, SHI Zhanling, LI Haitao

(School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China)

Abstract: Highly efficient TiO₂ photocatalysts (TiO₂/Ag-Ag₂O) co-modified by Ag as electron cocatalysts and Ag₂O as interfacial catalytic active sites were synthesized *via* a two-step process including the initial photoinduced deposition of metallic Ag nanoparticles on the TiO₂ surface (TiO₂/Ag) and the following *in situ* oxidation of partial Ag into Ag₂O by low-temperature calcination. Ag nanoparticles function as effective electron cocatalysts for the steady capture and rapid transportation of photogenerated electrons from TiO₂ surface to Ag₂O, while the adsorbed H⁺ ions from solution to Ag₂O as the interfacial catalytic active sites are reduced into H₂. The synergistic effect of Ag and Ag₂O can accelerate the electrons transfer and promote the rapid H₂-evolution reaction for enhanced photocatalytic H₂-evolution performance of TiO₂/Ag-Ag₂O. The highest H₂-evolution rate of the resultant TiO₂/Ag-Ag₂O calcinated at 300 °C reached 75.20 µmol/h, which was higher than those of the TiO₂ (3.59 µmol/h) and TiO₂/Ag (41.13 µmol/h) by 21.0 and 1.8 times, respectively. This study provides a new strategy for the design and synthesis of highly efficient photocatalytic H₂-evolution materials.

Key words: TiO_2 ; electron cocatalyst; interfacial catalytic active site; synergistic effect; photocatalytic H_2 evolution

收稿日期: 2019-09-04; 收到修改稿日期: 2019-12-04

基金项目:国家自然科学基金(51872221);国家级大学生创新创业训练计划项目(20181049715025) National Natural Science Foundation of China (51872221); National Undergraduate Innovation And Entrepreneurship Training Program (20181049715025)

作者简介: 王 苹(1970-), 女, 教授. E-mail: wangping0904@whut.edu.cn WANG Ping (1970-), female, professor. E-mail: wangping0904@whut.edu.cn

随着社会生产力的发展,人类对能源的需求量 日益增大,但是能源与环境平衡的问题也不容忽 视。在能源危机和环境污染的双重压力下,各国科 学家纷纷将研究的重点转向新型清洁能源的开 发^[1-4]。氢能因产热高、储量大、清洁无污染等优点 受到了各国科学家的青睐^[5-6]。在各类制氢技术中, 由 Fujishima 等^[7-10]开创的光催化制氢技术具有反应 条件温和、能耗低、操作简便等优势,成为一项具 有巨大应用潜力的新型制氢技术。作为光催化剂, TiO₂的性能稳定、无毒,并具有抗光腐蚀等优点, 但光生电子--空穴对极易复合,导致其制氢效率较 低[11-12]。目前可以通过形貌控制[13]、离子掺杂[14]、 半导体复合^[15]和助剂修饰^[16]等方法对 TiO₂ 改性。 其中,助剂表面修饰用量少、条件温和,并且对主 体材料结构影响很小, 是一种常见、有效的改性 手段。

己有研究[17-19]表明, 以金属纳米粒子作为电子 助剂修饰改性 TiO2 是一种提高光催化性能的有效 方法。但在大多数情况下, 金属材料(除 Pt 以外)本 身都不能作为有效的界面催化活性位点,导致迁移 到金属表面的电子不能及时与吸附在材料表面的 H⁺发生还原反应生成 H₂, 使金属修饰的 TiO₂ 光催 化材料表现出较低的界面析氢速率,并成为整个反 应过程中的控速步骤,最终制约了整体制氡效率。 最近研究表明^[20-21],在金属电子助剂表面增加金属 氧化物或硫化物等作为界面催化活性位点协同修饰 改性光催化剂是一种提高光催化性能的有效方法。 但由于一般在半导体光催化材料表面修饰的金属颗 粒比较小,往往是纳米级别的小颗粒,很难大量吸 附作为界面活性位点的基团或离子。而且,如果金 属电子助剂和界面活性位点之间是以物理吸附方式 结合,相互作用力较弱,结合不够牢固,仍然会影 响光生电子的快速传输以及随后的界面催化产氢反 应,不能明显改善光催化制氢性能。因此,发展新型 界面催化活性位点,促进其界面产氢催化反应,对 于提高半导体/电子助剂光催化材料体系的制氢性 能至关重要。

在金属表面定向生成可作为界面催化活性位点的物质,可以使两者紧密结合,进而改善电子的传输。考虑到 Ag₂O 有一定的吸氢能力,而且可以在Ag 与氧气发生反应时原位生成,使 Ag₂O 与 Ag 之间存在很强的亲和力,本研究设计了在 TiO₂ 光催化材料表面光沉积 Ag 后煅烧再生成 Ag₂O 的方法,制备了电子助剂 Ag 和界面活性位点 Ag₂O 共修饰的TiO₂ 光催化材料(TiO₂/Ag-Ag₂O),测试了 TiO₂/Ag-

Ag₂O 光催化剂的制氢性能,并研究了其光催化制 氢机理。

1 实验方法

1.1 主要试剂

商业 P25 TiO₂购于 Degussa 公司, AgNO₃、甲醇 和乙醇购于上海化学试剂公司,均为分析纯。实验 过程中用水均为去离子水。

1.2 样品制备

1.2.1 TiO₂-C 的制备

将装有一定量的 P25 TiO₂的坩埚放入马弗炉中, 然后以5℃/min 的速率升到 550℃并煅烧2h, 冷却 后取出坩埚,得到 TiO₂-C。

1.2.2 TiO₂/Ag 的制备

在三颈烧瓶中将 200 mg TiO₂ 粉末分散到 80 mL 10vol%的甲醇溶液中,磁力搅拌 10 min,得 到均匀分散的白色悬浊液;随后,在上述 TiO₂ 悬浊 液中缓慢滴加 186 μL 0.10 mol/L 的 AgNO₃ 溶液。搅 拌混合液 60 min,通氮气 15 min,然后用 4 个紫外 光灯(3 W, 365 nm)照射上述悬浊液,触发 Ag⁺的还 原反应。照射 60 min 后,经过滤、洗涤和干燥,得 到棕红色的 TiO₂/Ag 复合光催化剂。

1.2.3 TiO₂/Ag-Ag₂O 的制备

将 80 mg TiO₂/Ag 样品放置于带有盖子的瓷舟 中,放入马弗炉中煅烧,以 10 ℃/min 的速度上升至 设定温度(200,250,300,350,400 ℃)。煅烧结束后, 立即从炉子中取出产物并密封,将其冷却至室温, 即得 TiO₂/Ag-Ag₂O 光催化复合材料,标记为 TiO₂/Ag-Ag₂O(x),其中 x=200,250,300,350,400, 表示煅烧温度。

1.3 光催化制氢性能测试

参考本课题组的方法^[16]对材料进行制氢性能 测试,具体操作步骤为:在100 mL的三口平底烧瓶 中,将50 mg光催化剂样品分散到80 mL 25vol%的 乙醇溶液牺牲剂中,通氮气15 min。将密封的反应 容器放置在距离光源(4个365 nm的LED灯)1 cm 的位置进行照射,同时进行搅拌。每间隔30 min 测 1 次氢气含量,测试120 min,直至产氢稳定。气相 色谱仪(岛津 GC-2014C)的载气为氮气,配置 TCD 检测器和0.5 nm分子筛毛细管柱。

1.4 电化学测试

采用标准三电极系统电化学工作站(CHI660E) 采集电化学数据,对电极为 Pt,参比电极为 CHI150 型 Ag/AgCl,电解质溶液为 0.5 mol/L Na₂SO₄溶液。 采用旋涂方法将光催化剂涂布在导电玻璃(FTO)的 表面制备工作电极,具体步骤为:在由 1.5 mL 的萘 酚 D-520 溶液(5wt%)和 1 mL 无水乙醇制得的混合 溶液中加入4 mg样品,然后使用旋转涂膜仪将超声 后的悬浮液均匀涂抹在 FTO 上,室温下放置 1 h 后, 在 40 ℃下烘 24 h。工作电极(*J-V*)的线性扫描范围 为 0~-1.6 V,扫描速度为 0.001 V/s。测试工作电极 的 光电流(*i-t*)光源为 LED 灯(3 W, *λ*=365 nm, 80 mW/cm²),电压为 0.5 V,循环光照 4 次,每次光 照间隔 60 s。测试工作电极的电化学阻抗的初始电 压为开路电势,扫描范围为 0.001~10⁶ Hz。

1.5 样品表征

采用 X 射线衍射仪(XRD, Rigaku Ultima III)测 定样品的晶型;采用场发射扫描电子显微镜 (FESEM, JEOL JSM-7500)和透射电子显微镜(TEM, JEOL JEM-2100F)对样品的形貌特征进行研究观察; 采用紫外-可见分光光度计(UV-Vis, Shimadzu UV-2450)、以 BaSO₄为标样测试样品的紫外-可见漫反 射光谱;采用 X 射线光电子能谱仪(XPS, KRATOA XSAM800, Al Kα 靶)检测样品表面化学元素,标准 碳元素峰 C 1s 284.6 eV 为所有样品元素结合能的参 考标准。采用日本 Hitachi 公司的 F-7000 型荧光光 谱仪测定样品的荧光光谱,激发波长为 350 nm。

2 结果与讨论

2.1 TiO₂/Ag-Ag₂O 样品的合成

图 1(A) 是 通 过 光 沉 积 法 和 煅 烧 法 制 备 TiO₂/Ag-Ag₂O 样品的合成示意图,图 1(B)是对应的 样品照片。首先,传统的锐钛矿和金红石混合晶型 P25 TiO₂经过高温煅烧得到样品 TiO₂-C,将其分散 到 10vol%甲醇溶液中,得到乳白色的悬浊液。随后, 通过光沉积法使 AgNO₃ 溶液中的 Ag⁺原位还原 成 Ag 纳米颗粒并沉积在 TiO₂表面,悬浊液的颜色 也从乳白色变为棕红色(图 1(B)中 b),得到 TiO₂/Ag 光催化剂的悬浮液。最后,将制备的 TiO₂/Ag 样品 分别在马弗炉中不同温度下煅烧,得到 TiO₂/Ag-Ag₂O(x)光催化剂。将所制得的 TiO₂/Ag-Ag₂O(x)光催化剂。将所制得的 TiO₂/Ag-Ag₂O(x)光催化剂。将所制得的 TiO₂/Ag-Ag₂O(x)中,悬 浊液分别为浅红色(TiO₂/Ag-Ag₂O(200),图1(B)中 c)、浅蓝色(TiO₂/Ag-Ag₂O(300),图1(B)中d)和灰白 色(TiO₂/Ag-Ag₂O(400),图1(B)中e),样品对应悬浮 液的颜色随着煅烧温度的升高逐渐变浅。这是因为 Ag 在低温煅烧(100~400℃)的环境下部分被O₂氧 化为Ag₂O^[22],而当温度达到300℃以上后,生成的 Ag₂O 又会分解生成O₂和Ag,导致样品的颜色出现 相应变化。

2.2 样品的微结构分析

为确定所制备样品的晶体结构,测定了不同样品的 XRD 图谱(图 2)。TiO₂-C 中同时存在金红石型TiO₂ (JCPDS-99-0090)和锐钛矿型TiO₂ (JCPDS-99-0008)的衍射峰,与原料P25晶型一致^[12]。TiO₂/Ag和TiO₂/Ag-Ag₂O(x)的XRD衍射峰与TiO₂-C相比没有明显变化,说明负载Ag和Ag₂O对TiO₂-C的晶型以及晶化程度没有影响。比较TiO₂-C和TiO₂/Ag的金属Ag慢扫图(图 2(B))可见,TiO₂/Ag样

图 1 (A) TiO₂/Ag-Ag₂O 合成示意图和(B)对应样品照片 Fig. 1 (A) Schematic diagram of preparation for TiO₂/Ag-Ag₂O and (B) their corresponding photographs (a) TiO₂-C; (b) TiO₂/Ag; (c) TiO₂/Ag-Ag₂O(200); (d) TiO₂/Ag-Ag₂O (300); (e) TiO₂/Ag-Ag₂O(400)

图 2 TiO₂-C、TiO₂/Ag 和 TiO₂/Ag-Ag₂O(x)的(A) XRD 图谱、(B) 金属 Ag 的慢扫图谱和(C) Ag₂O 的慢扫图谱 Fig. 2 (A) XRD patterns, (B) diffraction peaks of metallic Ag and (C) diffraction peaks of Ag₂O for TiO₂-C, TiO₂/Ag and TiO₂/Ag-Ag₂O(x)

品在金属 Ag 的特征衍射峰(2*θ*=38.1°)处有明显的增强, Ag 助催化剂已经成功沉积在 TiO₂ 表面^[19]。 TiO₂/Ag-Ag₂O (300)在金属 Ag 的特征衍射峰处的强 度比 TiO₂/Ag 有所减弱,说明煅烧后样品中 Ag 含量 有所降低^[22]。进一步观察样品的 Ag₂O 慢扫图 (图 2(C))发现, TiO₂/Ag-Ag₂O(300)样品中没有出现 明显的 Ag₂O 衍射峰,这可能是因为 Ag₂O 的含量太 低而无法检出。

从场发射扫描电镜(图 3(A~F))中发现, TiO₂-C、 TiO₂/Ag 和 TiO₂/Ag-Ag₂O(*x*)的颗粒大小(20~50 nm) 基本相同。TiO₂/Ag 的 EDX 数据(图 3(B)插图)中出 现了 Ag 元素,说明 Ag 已经成功负载在 TiO₂颗粒表 面。比较图 3(C~F)插图中的 EDX 数据发现 TiO₂/Ag-Ag₂O(*x*)中 Ag 元素的原子百分含量随煅烧 温度升高先逐渐降低, TiO₂/Ag-Ag₂O(350)达到最低, 然后又有所升高。这是由于在煅烧过程中 TiO₂/Ag 样品中的 Ag 部分被氧化为 Ag₂O, 当温度达到 350 ℃后, Ag₂O 在高温环境中又迅速分解成 Ag 和 O₂,并且 Ag₂O 分解的速度大于生成的速度^[22]。从 TiO₂/Ag-Ag₂O(300)的 TEM 照片(图 3(G))可见,在 TiO₂颗粒表面均匀负载着尺寸约为5 nm 的 Ag 纳米 粒子(红色圆圈中的黑色颗粒)。其高分辨 TEM 照片 (图 3(H))中有 TiO₂(101)面的晶格条纹,间距为 0.350 nm^[12],以及 Ag(111)面的晶格条纹,间距为 0.236 nm^[22]。晶格在 Ag 纳米粒子边缘区域有微小 的变化,主要源于在 Ag 表面原位氧化生成的 Ag₂O, 进一步证明成功制备了 Ag 和 Ag₂O 共修饰的 TiO₂ 复合光催化剂。

图 3 (A~F) TiO₂-C、TiO₂/Ag 和 TiO₂/Ag-Ag₂O(x)的 FESEM 照片(插图: EDX 谱图和数据) 和(G, H) TiO₂/Ag-Ag₂O(300) 的 TEM 照片 Fig. 3 (A-F) FESEM images of TiO₂-C, TiO₂/Ag and TiO₂/Ag-Ag₂O(x)with insets showing their corresponding EDS spectra and

Fig. 3 (A-F) FESEM images of TiO₂-C, TiO₂/Ag and TiO₂/Ag-Ag₂O(x) with insets showing their corresponding EDS spectra and data, and TEM images of TiO₂/Ag-Ag₂O(300) at low (G) and high (H) magnifications

785

图 4(A)是不同样品的 XPS 全谱图。位于 289、 473 和 534 eV 结合能的峰分别对应于 C1s、Ti2p 和 Ols 的特征峰, 其中 Ti、O 元素主要来源于 TiO₂, C 元素则来源于碳污染。与 TiO2-C 相比, 在 TiO2/Ag 和 TiO₂/Ag-Ag₂O(x)中出现了 Ag 的特征峰, 并且在 Ag3d 高分辨率 XPS 图谱(图 4(B))中, TiO₂/Ag 和 TiO₂/Ag-Ag₂O 在大约 368 和 374 eV 处有明显的 Ag3d_{5/2} 和 Ag3d_{3/2} 特征峰, 说明存在 Ag 元素。 TiO₂/Ag-Ag₂O(x)与 TiO₂/Ag 相比, 其特征峰向较高 的结合能偏移,这是由于煅烧后部分 Ag 转变为 Ag2O 造成的^[23]。图 4(C)是 TiO₂/Ag-Ag₂O(300)样品 的 Ag3d 典型峰拟合曲线。367.44 和 368.15 eV 的峰 分别对应于 Ag⁰和 Ag⁺的 3d_{5/2}轨道; 373.46 和 374.16 eV 的峰分别对应于 Ag^0 和 Ag^+ 的 $3d_{3/2}$ 轨道^[22,24]。图4(D) 是 TiO₂/Ag-Ag₂O(300)样品的 O1s 分峰的拟合曲线, 其中 Ti-O 和 Ti-O-Ag 键的峰对应于 Ag 与 TiO2之 间的作用力。而且,在 XPS 图谱的 Ag 分峰数据(表 1)中, TiO₂/Ag-Ag₂O(200~400)的 Ag⁺/Ag⁰ 数值先升 后降,进一步证明 TiO₂/Ag-Ag₂O 样品中同时存在 Ag和 Ag₂O。

图 5 为不同样品紫外--可见漫反射光谱转化后的吸收光谱图,插图为对应样品的照片。TiO₂-C 光催化剂样品的紫外--可见吸收光谱的吸收边在410 nm

左右, 样品呈白色^[12]。TiO₂/Ag 光催化剂在 410~800 nm 范围的可见光区具有较强的吸收, 白色的 TiO2 样品 转变为棕红色。这主要是因为 Ag 纳米粒子的表面 等离子体共振效应引起了可见光区的吸收加强[21]。 TiO₂/Ag-Ag₂O 样品在紫外光区的吸收与 TiO₂-C 无 明显差异,在可见光区的吸收随着煅烧温度的升高 出现明显减弱,分别呈紫色(TiO₂/Ag-Ag₂O(200))、暗蓝 色(TiO₂/Ag-Ag₂O(300))和灰白色(TiO₂/Ag-Ag₂O(400))。 随着煅烧温度的升高, TiO₂/Ag-Ag₂O样品表面的Ag 逐渐被氧化为 Ag₂O, 导致 Ag 的等离子体共振效应 随之减弱。相比于 TiO₂, TiO₂/Ag 和 TiO₂/Ag-Ag₂O(x) 样品的紫外吸收边略有红移,可能是由于金属 Ag 与TiO2之间形成了Ti-O-Ag键,以及金属Ag被氧 化成 Ag₂O, 形成 Ag-O-Ag 键, 导致光催化剂体系跃 迁能量略有下降。而且,相比于 TiO₂, TiO₂/Ag-Ag₂O 具有更强的紫外--可见光吸收性能。

2.3 光催化制氢性能和光催化制氢机理

图 6(A)是不同样品的制氢速率柱状图。 TiO₂/Ag-Ag₂O 的制氢速率随着样品煅烧温度的逐步升高而表现出先升高后下降的规律,并在煅烧温 度为 300 ℃时达到最大(75.20 µmol/h),分别是 TiO₂-C(3.59 µmol/h)和TiO₂/Ag(41.13 µmol/h)的制氢 速率的 21.0 和 1.8 倍。当煅烧温度超过 300 ℃后样

图 4 TiO₂-C、TiO₂/Ag 和 TiO₂/Ag-Ag₂O(x)的(A)XPS 全谱和(B)Ag3d 谱的高分辨率 XPS 谱; TiO₂/Ag-Ag₂O(300)样品的(C)Ag3d 和(D)O1s 典型峰的拟合曲线

Fig. 4 (A) XPS survey spectra and (B) the high-resolution XPS spectra of Ag3d spectra of TiO₂-C, TiO₂/Ag and TiO₂/Ag-Ag₂O(x), and typical fitting curves of (C)Ag3d and (D)O1s for TiO₂/Ag-Ag₂O(300)

Fable 1	Contents of elements in various samples according to XPS analysis

Element	TiO ₂ –C	TiO ₂ /Ag	TiO ₂ /Ag-Ag ₂ O(200)	$TiO_2/Ag-Ag_2O(300)$	$TiO_2/Ag-Ag_2O(400)$
C1s/%	38.97	25.82	46.37	37.05	28.11
Ti2p/%	19.53	25.01	15.18	19.39	22.73
O1s/%	41.50	48.82	38.05	42.43	46.46
Ag3d/%	_	0.36	0.40	1.13	2.70
Ag^+/Ag^0	_	1.02	2.15	4.42	3.52

图 5 TiO₂-C、TiO₂/Ag 和 TiO₂/Ag-Ag₂O(x)的 UV-Vis 吸收 光谱及对应样品照片

Fig. 5 UV-Vis absorption spectra of TiO₂-C, TiO₂/Ag and TiO₂/Ag-Ag₂O(x) and their corresponding photographs (inset) (a) TiO₂-C; (b) TiO₂/Ag; (c) TiO₂/Ag-Ag₂O(200); (d) TiO₂/Ag-Ag₂O(300); (e) TiO₂/Ag-Ag₂O(400)

图 6 (A) TiO₂-C、TiO₂/Ag 和 TiO₂/Ag-Ag₂O(x)的光催化制 氢性能; (B) TiO₂/Ag-Ag₂O(300)的循环性能

Fig. 6 (A) Photocatalytic H₂-evolution activity of TiO₂-C, TiO₂/Ag and TiO₂/Ag-Ag₂O(x), and (B) cycling performance of TiO₂/Ag-Ag₂O(300)

品的制氢速率有所下降。不同煅烧温度的样品制氢性能变化规律和 EDX 图谱(图 3(A~F)插图)中 Ag 和 Ag2O 的含量变化趋势相对应,说明表面负载 Ag 和 Ag2O 对 TiO2 光催化剂制氢性能具有重要影响。为了验证光催化剂的性能稳定性,测试了样品 TiO2/Ag-Ag2O(300)的4次循环性能(图 6(B))。由图可知,随着循环次数的增加,样品 TiO2/Ag-Ag2O(300)的制氢速率虽有所下降,但始终高于 TiO2/Ag 和 TiO2-C,说明 TiO2/Ag-Ag2O 样品具有一定的稳定性。

图 7 为 TiO₂/Ag-Ag₂O 的光催化制氢机理示意 图。在紫外光照射下, TiO₂产生光生电子和空穴, 金 属 Ag 充当电子助剂能够快速转移光生电子, 加快 光生电子--空穴对的有效分离, 抑制两者的复合。Ag 表面的光生电子进一步转移到其上的 Ag₂O, 同时 Ag₂O 作为界面催化反应活性位点吸附溶液中的 H⁺ 产生 H₂, 加速了界面催化产氢反应速率^[22]。不同煅 烧温度样品制氢性能变化规律与样品 Ag₂O 含量变 化规律的一致性也证明了这一点。所以, 电子助剂 Ag 和界面活性位点 Ag₂O 的协同作用增强了 TiO₂ 光催化的制氢性能。

为验证TiO₂/Ag-Ag₂O光催化制氢机理,对样品 进行光电化学表征。图 8(A)是不同样品的线性扫描 伏安曲线(LSV)。其中, TiO₂/Ag 的电流密度明显超 过 TiO₂-C, 产氢过电位略微降低, 表明 Ag 作为助 催化剂能够快速捕获光生电子,促使溶液中的 H⁺ 还原成 H₂^[21]。TiO₂/Ag-Ag₂O 的电流密度进一步增 大,同时产氢过电压逐渐降低,表明 Ag2O 是一种 高效的界面催化活性位点, 能有效吸附溶液中的 H⁺, 加快界面催化反应。为了进一步研究 TiO₂/Ag-Ag₂O 中光生载流子的捕获、分离和传输效率,测量了不 同光催化剂的瞬态光电流响应曲线(图 8(B))和电 化学阻抗谱(EIS, 图 8(C))。由图 8(B)可以看出, 相对于 TiO₂-C, TiO₂/Ag 的光电流密度明显提升, 说明Ag具有优异的载流子传输性能,能有效促进 光生电荷的分离。随着煅烧温度从 200 ℃升到 400 ℃, TiO₂/Ag-Ag₂O(*x*)的光电流密度先明显增 加, TiO₂/Ag-Ag₂O(300)达到最大, 后有所下降, 但

图 7 TiO₂/Ag-Ag₂O的光催化制氢机理示意图

Fig. 7 Schematic diagram of photocatalytic $\rm H_2\text{-}evolution$ mechanism of $\rm TiO_2/Ag\text{-}Ag_2O$

图 8 TiO₂-C、TiO₂/Ag 和 TiO₂/Ag-Ag₂O(x)的(A)线性扫描曲 线(LSV)、(B)瞬态光电流响应和(C)电化学阻抗谱(EIS) Fig. 8 (A) Linear sweep voltammetry (LSV) curves, (B) transient photocurrent responses, and (C) electrochemical impedance spectra (EIS) of TiO₂-C, TiO₂/Ag and TiO₂/Ag-Ag₂O(x)

TiO₂/Ag-Ag₂O(400)的光电流密度依然超过TiO₂-C。 由图 8(C)可见,TiO₂/Ag-Ag₂O(*x*)样品的圆弧半径小 于TiO₂-C和TiO₂/Ag,说明Ag₂O与Ag之间的传输

图 9 TiO₂-C、TiO₂/Ag和TiO₂/Ag-Ag₂O(*x*)的荧光光谱图 Fig. 9 Photoluminescence (PL) spectra of TiO₂-C, TiO₂/Ag and TiO₂/Ag-Ag₂O(*x*)

阻力小,光生载流子的传输效率高^[25]。Ag 与 Ag₂O 以适当比例共存时,电子助剂 Ag 和界面活性位点 Ag₂O 能显著提高光生电子转移速度,加快界面的 产氢催化反应速率,促进光生电子和空穴的分离,改善TiO₂光催化制氢性能。

为揭示样品在光照时光生载流子复合的情况,测定了样品的荧光(PL)光谱图(图9)。相比于 TiO₂-C, TiO₂/Ag 的荧光强度有所下降,说明电子和空穴的 复合得到有效抑制,主要是由于 Ag 起到了快速传 输电子的作用。TiO₂/Ag-Ag₂O(x)的光生载流子复合 的情况相对于 TiO₂/Ag 有增有减。TiO₂/Ag-Ag₂O(300) 的荧光强度最弱,说明其电子空穴复合率最低、分 离效率最高^[26],有助于改善产氢性能。

3 结论

本研究采用光沉积法和煅烧法制备了 TiO₂/Ag-Ag₂O复合光催化剂,表现出较高的光催化 制氢性能。300℃煅烧制得的复合光催化剂的制氢 速率达到最大值(75.20 µmol/h),分别是 TiO₂-C 和 TiO₂/Ag 的 21.0 和 1.8 倍。TiO₂/Ag-Ag₂O 复合光催 化剂制氢性能显著提高的原因是: Ag 作为电子助剂 快速转移光生电子, Ag₂O 作为界面催化反应活性位 点加快界面产氢速率,两者的协同作用促使光生电 子-空穴复合率显著降低,从而提高了 TiO₂ 的制氢 速率。本研究对设计具有高效制氢性能的 TiO₂ 光催 化复合材料具有一定的指导意义。

参考文献:

- DU H, LIU Y, SHENG C, *et al.* Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. *Chinese Journal of Catalysis*, 2017, **38(8):** 1295–1306.
- [2] ZHANG K, PARK J H. Surface localization of defects in black TiO₂: enhancing photoactivity or reactivity. *Journal of Physical*

Chemistry C, 2017, 8: 199-207.

- [3] LIU Q, SHEN J, YU X, et al. Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)codoped and exfoliated ultrathin g-C₃N₄ nanosheets. Applied Catalysis B: Environmental, 2019, 248: 84–94.
- [4] TIAN L, YANG X, LIU Q, et al. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. *Applied Surface Science*, 2018, 455: 403–409.
- [5] MA Y, LI Q. Preparation and characterization of TiO₂/Co₃O₄ nanocomposites and their photocatalytic activity for hydrogen evolution. *Journal of Inorganic Materials*, 2016, **31(8):** 841–844.
- [6] JIANG Y, QUA F, TIAN L, et al. Self-assembled g-C₃N₄ nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency. Applied Surface Science, 2019, 487: 59–67.
- [7] WEI J, LI X, WANG H, et al. Nitrogen doped carbon quantum dots/titanium dioxide composites for hydrogen evolution under sunlight. *Journal of Inorganic Materials*, 2015, 30(9): 925–930.
- [8] YAN C, XUE X, ZHANG W, et al. Well-designed Te/SnS₂/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water. *Nano Energy*, 2017, **39**: 539–545.
- [9] LIU W, SHEN J, LIU Q, et al. Porous MoP network structure as co-catalyst for H₂ evolution over g-C₃N₄ nanosheets. Applied Surface Science, 2018, 462: 822–830.
- [10] TANG H, WANG R, ZHAO C, *et al.* Oxamide-modified g-C₃N₄ nanostructures: tailoring surface topography for high-performance visible light photocatalysis. *Chemical Engineering Journal*, 2019, **374:** 1064–1075.
- [11] LI C, JIN H, YANG Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO₂ composites. *Journal of Inorganic Materials*, 2017, **32 (04):** 357–364.
- [12] WANG P, LU Y, WANG X, et al. Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)₂ electron cocatalyst for enhanced photocatalytic H₂-production performance of TiO₂. Applied Surface Science, 2017, **391**: 259–266.
- [13] ZHANG W, ZHANG H, XU J, et al. 3D flower-like heterostructured TiO₂@Ni(OH)₂ microspheres for solar photocatalytic hydrogen production. *Chinese Journal of Catalysis*, 2019, 40(3): 320–325.
- [14] KUMARAVEL V, MATHEW S, BARTIETT J, et al. Photocatalytic hydrogen production using metal doped TiO₂: a review of recent advances. *Applied Catalysis B: Environmental*, 2019, 244: 1021–1064.
- [15] ZHAO D, YANG C F. Recent advances in the TiO2/CdS nano-

composite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. *Renewable and Sustainable Energy Reviews*, 2016, **54:** 1048–1059.

- [16] CHEN F, LUO W, Mo Y, *et al. In situ* photodeposition of amorphous CoS_x on the TiO₂ towards hydrogen evolution. *Applied Surface Science*, 2018, **430**: 448–456.
- [17] GUPTA B, MELVIN A A, MATTHEWS T, et al. TiO₂ modification by gold (Au) for photocatalytic hydrogen (H₂) production. *Renew*able and Sustainable Energy Reviews, 2016, **58**: 1366–1375.
- [18] HOU L, ZHANG M, GUAN Z, et al. Effect of platinum dispersion on photocatalytic performance of Pt-TiO₂. Journal of Nanoparticle Research, 2018, 20(3): 1–8.
- [19] SARAVANAN R, MANOJ D, QIN J, et al. Mechanothermal synthesis of Ag/TiO₂ for photocatalytic methyl orange degradation and hydrogen production. Process Safety and Environmental Protection, 2018, **120**: 339–347.
- [20] WANG P, SHENG Y, WANG F, et al. Synergistic effect of electrontransfer mediator and interfacial catalytic active-site for the enhanced H₂ evolution performance: a case study of CdS/Au photocatalyst. Applied Catalysis B: Environmentai, 2018, 220: 561–569.
- [21] YU H, LIU W, WANG X, et al. Promoting the interfacial H₂-evolution reaction of metallic Ag by Ag₂S cocatalyst: a case study of TiO₂/Ag-Ag₂S photocatalyst. Applied Catalysis B: Environmental, 2018, 225: 415–423.
- [22] WANG X, LIAO D, YU H, et al. Highly efficient BiVO₄ singlecrystal photocatalyst with selective Ag₂O-Ag modification: orientation transport, rapid interfacial transfer and catalytic reaction. *Dalton Transactions*, 2018, 47(18): 6370–6377.
- [23] YU H, LIU R, WANG X, et al. Enhanced visible-light photocatalytic activity of Bi₂WO₆ nanoparticles by Ag₂O cocatalyst. Applied Catalysis B: Environmental, 2012, 111–112: 326–333.
- [24] LI J, HAO H, ZHOU J, et al. Ag@AgCl QDs decorated g-C₃N₄ nanoplates: the photoinduced charge transfer behavior under visible light and full arc irradiation. *Applied Surface Science*, 2017, 422: 626–637.
- [25] KIM J, JUN H, HONG S, et al. Charge transfer in iron photoanode modified with carbon nanotubes for photoelectrochemical water oxidation: an electrochemical impendence study. International Journal of Hydrogen Energy, 2011, 36: 9462–9468.
- [26] LIU Y, DING S, SHI Y, et al. Construction of CdS/CoO_x core-shell nanorods for efficient photocatalytic H₂ evolution. Applied Catalysis B: Environmental, 2018, 234: 106–116.